Translation equivalents are not special in

bilingual infant vocabulary development: Evidence from a quantitative model

CONCORDIA INFANT RESEARCH LABORATORY
Laboratoire de RECHERCHE
SUR L'ENFANCE DE SUR L'ENFANCE
CONCORDIA

Rachel Ka-Ying Tsui

Ana Maria Gonzalez-Barrero

Esther Schott

Krista Byers-Heinlein

Pomme

Translation equivalents:
2 labels for the same concept

A first label for a concept

Translation equivalents are special...

- Learned differently from singlets
- Strong semantic overlap

3 competing theories:

 How are translation equivalents learned?Account \#1

Bilingual children reject translation equivalents in favour of learning one label for each referent
(Volterra \& Taeschner, 1978)

Account \#2

Bilingual children favour learning translation equivalents
(Bilson et al., 2015; Floccia et al., 2020)

Account \#3

Bilingual children learn translation equivalents and singlets in a similar way (Pearson et al., 1995)

Contributors to translation equivalent knowledge

Vocabulary in
dominant
language

Vocabulary in
non-dominant
language

Translation equivalents

Contributors to translation equivalent knowledge

Vocabulary in
dominant
language

Vocabulary in
non-dominant
language

Translation equivalents

Contributors to translation equivalent knowledge

Contributors to translation equivalent knowledge

Number of CDI words produced at the $90^{\text {th }}$ percentile

- Average

Language $=$ English at the 90th percentile

- French at the 90th percentile

Our study

- Translation equivalent knowledge as a function of bilinguals' own vocabulary size in each language
- What is the nature of translation equivalent learning in bilingual children?

Translation equivalents are harder to learn than singlets

Translation equivalents are easier to learn than singlets

Translation equivalents are similar to learn as singlets

Bilingual Vocabulary Model

Within a bilingual child

Bilingual Vocabulary Model

Within a bilingual child

Bilingual Vocabulary Model

Within a bilingual child

Joint probability of learning the words in each language

Bilingual Vocabulary Model

Within a bilingual child

Bilingual Vocabulary Model

Within a bilingual child

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

Number of dominant vocabulary known
Number of learnable vocabulary

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

```
Vocabulary
learning in non-dominant
language
```

Number of non-dominant vocabulary known Number of learnable vocabulary

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

$90^{\text {th }}$ percentile for a
21-month-old child

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

$$
P(\text { Dominant })=\frac{300}{400}
$$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected(Dominant and Non-Dominant) $=$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents =

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents $=$
P(Dominant and Non-Dominant) \times Number of learnable vocabulary

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents =
$P($ Dominant and Non-Dominant) \times Number of learnable vocabulary

$$
\frac{300}{400} \times \frac{100}{400}
$$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents =
$P($ Dominant and Non-Dominant) \times Number of learnable vocabulary

$$
\frac{300}{400} \times \frac{100}{400} \times 400
$$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents =

$$
\frac{300 \times 100}{400}
$$

Bilingual Vocabulary Model

$P($ Dominant and Non-Dominant $)=P($ Dominant $) \times P($ Non-Dominant $)$
$\frac{300}{400} \quad \frac{100}{400}$

Expected number of translation equivalents =

No. of learnable vocabulary

To evaluate if translation equivalents are learned independently,

Expected no. of
Translation equivalents

To evaluate if translation equivalents are learned independently,

Expected no. of
Translation equivalents

To evaluate if translation equivalents are learned independently,

Validating the Bilingual Vocabulary Model

1 Running simulations under the Neutral Account

2 Testing the bias parameter with real-life observed data

1 Simulation

Simulated data

216 simulated children
Generated from a range of possible dominant vocabulary from 100 to 600, and a range of non-dominant

1 Simulation

Simulated data

Proportion of words produced in the non-dominant language relative to the total vocabulary produced

Vocabulary balance $(B A L A N C E)-0.5-0.4-0.3-0.2-0.1$

1 Simulation

Simulated data

1 Simulation

Simulated data

1 Simulation

Simulated data

Simulated data

Observed data

Panel 1B: Dominant vocabulary

Panel 2B: Dominant vocabulary

Panel 1C: Non-dominant vocabulary

Panel 2C: Non-dominant vocabulary

2 Testing the bias parameter

 Expected no. of translation equivalents
2 Testing the bias parameter

No. of dominant vocabulary \times No. of non-dominant vocabulary No. of learnable vocabulary

2 Testing the bias parameter

2 Testing the bias parameter

2 Testing the bias parameter

Translation equivalents are neither harder nor easier to learn than singlets

Less than 300 total vocabulary

More than 300 total vocabulary

Number of TEs predicted by the Bilingual Vocabulary Model
Developmental
change change

What is the nature of translation equivalent learning?

- Vocabulary in each language develops independently (Marchman, Fernald, \& Hurtado, 2010)
- Translation equivalents are the by-chance overlap between the two languages (Pearson et al., 1995)

Contributions of the Bilingual Vocabulary Model

Including some quantitative factors that can predict vocabulary acquisition
Many other factors:

- A child's efficiency of processing words they hear (e.g., Hurtado et al., 2013; Weisleder \& Fernald, 2013)
- Qualitative factors:
quality of input (e.g., Raneri et al., 2020, Rowe, 2012),
SES (e.g., Hoff, 2003; Fernald, Marchman, \& Weisleder, 2013)

Contributions of the Bilingual Vocabulary Model

A simplified computation

Equal opportunities for words to be learned in each of their languages

- A high degree of commonality in the first words children produced (e.g., Braginsky et al., 2016; Tardif et al., 2008)
- Possible that bilinguals learn different words depending on linguistic contexts (Grosjean, 2016)

Translation equivalent learning does not hold a special status and emerges predictably from the word learning process.

Rachel Ka-Ying Tsui
(\because rachelkytsui

Esther Schott
(3) estSchott

36/36

Ana Maria Gonzalez-Barrero
@ anamaria.gonzalez@dal.ca

Krista Byers-Heinlein
(3) Krista_BH

