Translation equivalents are not special in bilingual infant vocabulary development: Evidence from **a quantitative model** 









Rachel Ka-Ying Tsui



Ana Maria Gonzalez-Barrero



Esther Schott



Krista Byers-Heinlein





### Translation equivalents:

2 labels for the same concept



## Translation equivalents are special...

- Learned differently from singlets
- Strong semantic overlap



### 3 competing theories:

How are translation equivalents learned?

Account #1

Bilingual children <u>reject</u> translation equivalents in favour of learning one label for each referent (Volterra & Taeschner, 1978)

**Avoidance Account** 

#### Account #2

Bilingual children <u>favour</u> learning translation equivalents (Bilson et al., 2015; Floccia et al., 2020) Account #3

Bilingual children learn translation equivalents and singlets <u>in a similar way</u> (Pearson et al., 1995)

**Preference Account** 

**Neutral Account** 









#### Number of CDI words produced at the 90<sup>th</sup> percentile



10/36

# Our study

- Translation equivalent knowledge as a function of bilinguals' own vocabulary size in each language
- What is the nature of translation equivalent learning in bilingual children?



Within a bilingual child





Within a bilingual child



Within a bilingual child





P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)



Number of dominant vocabulary known Number of learnable vocabulary

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

Vocabulary learning in non-dominant language

Number of non-dominant vocabulary known

Number of learnable vocabulary

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)



P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)



 $P(Dominant) = \frac{300}{400}$ 

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)



P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

| 300 | 100 |
|-----|-----|
|     |     |
| 400 | 400 |

P(Dominant and Non-Dominant) =  $\frac{P(Dominant)}{\frac{300}{400}} \times \frac{100}{\frac{400}{400}}$ 

### Expected(Dominant and Non-Dominant) =

P(Dominant and Non-Dominant) =  $\frac{P(Dominant)}{\frac{300}{400}} \times \frac{100}{\frac{400}{400}}$ 

#### Expected number of translation equivalents =

P(Dominant and Non-Dominant) =  $\frac{P(Dominant)}{\frac{300}{400}} \times \frac{100}{\frac{400}{400}}$ 

### Expected number of translation equivalents =

P(Dominant and Non-Dominant) × Number of learnable vocabulary

P(Dominant and Non-Dominant) =  $\frac{P(Dominant)}{\frac{300}{400}} \times \frac{P(Non-Dominant)}{\frac{100}{400}}$ 

### Expected number of translation equivalents =

P(Dominant and Non-Dominant) × Number of learnable vocabulary  $\frac{300}{400} \times \frac{100}{400}$ 

P(Dominant and Non-Dominant) =  $\frac{P(Dominant)}{\frac{300}{400}} \times \frac{100}{\frac{400}{400}}$ 

#### Expected number of translation equivalents =



P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

| 300 | 100 |
|-----|-----|
|     |     |
| 400 | 400 |

Expected number of translation equivalents =

<u>300 × 100</u> 400

P(Dominant and Non-Dominant) = P(Dominant) × P(Non-Dominant)

| 400 | 400 |
|-----|-----|
| 300 | 100 |

### Expected number of translation equivalents =



#### To evaluate if translation equivalents are learned independently,

Expected no. of Translation equivalents = No. of dominant vocabulary × No. of non-dominant vocabulary No. of learnable vocabulary

#### To evaluate if translation equivalents are learned independently,

Expected no. of Translation equivalents = No. of dominant vocabulary × No. of non-dominant vocabulary × Bias parameter No. of learnable vocabulary

### To evaluate if translation equivalents are learned independently,



# Validating the Bilingual Vocabulary Model



**1** Running simulations under the Neutral Account



**2** Testing the bias parameter with real-life observed data

# **1** Simulation

### Simulated data

216 simulated children

Generated from a range of possible dominant vocabulary from 100 to 600, and a range of non-dominant

vocabulary from o to 600

Archival data collected in Montréal (2010 to 2018)

200 English-French bilingual children (18 – 33 months)

MacArthur-Bates Communicative Development Inventories: Words and Sentences:

- English (Fenson et al., 2007) and

Observed data

- Canadian French (Trudeau et al., 1997)

611 translation equivalents

Identified by 3 proficient bilingual French–English adults



1



Vocabulary balance (BALANCE) - 0.5 - 0.4 - 0.3 - 0.2 - 0.1





Vocabulary balance (BALANCE) — 0.5 — 0.4 — 0.3 — 0.2 — 0.1









Vocabulary balance (BALANCE) - 0.5 - 0.4 - 0.3 - 0.2 - 0.1



Vocabulary balance (BALANCE) - 0.5 - 0.4 - 0.3 - 0.2 - 0.1

Expected no. of translation equivalents

**Observed** no. of vs. translation equivalents

No. of dominant vocabulary × No. of non-dominant vocabulary × Bias parameter

No. of learnable vocabulary

**Observed** no. of translation equivalents

No. of dominant vocabulary × No. of non-dominant vocabulary No. of learnable vocabulary









<sup>31/36</sup> 

## What is the nature of translation equivalent learning?



- Vocabulary in each language develops independently (Marchman, Fernald, & Hurtado, 2010)
- Translation equivalents are the by-chance overlap between the two languages (Pearson et al., 1995)

# Contributions of the Bilingual Vocabulary Model

An integrated approach

# Including some quantitative factors that can predict vocabulary acquisition

Many other factors:

- A child's efficiency of processing words they hear (e.g., Hurtado et al., 2013; Weisleder & Fernald, 2013)
- Qualitative factors:

quality of input (e.g., Raneri et al., 2020, Rowe, 2012), SES (e.g., Hoff, 2003; Fernald, Marchman, & Weisleder, 2013)

# Contributions of the Bilingual Vocabulary Model



Translation equivalent learning does not hold a special status and emerges predictably from the word learning process.

#### Rachel Ka-Ying Tsui





Ana Maria Gonzalez-Barrero anamaria.gonzalez@dal.ca

# THANKYOU!









estSchott





Krista Byers-Heinlein



CONCORDIA INFANT RESEARCH LABORATORY

LABORATOIRE DE RECHERCHE SUR L'ENFANCE DE CONCORDIA

36/36